CALCULUS: Graphical, Numerical, Algebraic by Finney, Demana, Watts and Kennedy Chapter 7: (Application of Definite Integrals 7.1: Integral as Net Change

$$\int_{2}^{7} v(t)dt = -12$$

$$\int_{2}^{10} v(t)dt = 4.5$$

20.

The graph of the velocity of a particle moving on the x-axis is given. The particle starts at x = 2 when t = 0.

- a) Find the particles displacement for the first 4 seconds (4) (1) (1) (1) (2+1) (2+1) (2+1) (3)
- b) Where is the particle at the end of the trip? (4 = 10)

c) Find the total distance traveled by the particle.

No Calculutor

The function v(t) = 16 - 4t is the velocity in m/sec of a particle moving along the x-axis from [0,6].

a) Determine when the particle is stopped and when the particle is moving to the right and left.

b) Find the particle's displacement for the given time interval.

$$\int_{0}^{6} v(t) dt = \int_{0}^{6} (16-4t) dt = 16t - 2t^{2} \int_{0}^{6} = 16(6) - 2(6)^{2} = 24 \text{ meles}$$

c) If s(0) = 3, what is the particle's final position?

stork
$$5(6) = 5tort + \int displacement$$

= 3 + 24 = 27 meters

1/4)=16-4t

d) Find the total distance traveled by the particle.

$$\int_{0}^{6} |v(t)| dt = \int_{0}^{4} |6-4t| dt + \int_{4}^{4} |6-4t| dt$$

$$= |6t-2t^{2}|_{4}^{4} + |6t-2t^{2}|_{4}^{4}$$

$$= |6t^{4}-2t^{2}|_{4}^{4} + |32|_{4}^{4}$$

$$= |6t^{4}-2t^{2}|_{4}^{4}$$

$$= |6t^{4}-2t^$$